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Abstract
Traditional classification models are used to sepa-
rate data into groups, with the most simplistic ex-
ample being a binary-classification model where
only two target classes exist. Similarly, we of-
ten encounter multi-classification scenarios where
n > 2 target classes exist. These models are of-
ten designed to provide a definitive “Hard” label,
where only one label is assigned. However, for
many classification applications, the assignment of
a single label is unhelpful or misleading. Thus, a
multi-label “Soft” classification method is neces-
sary to represent the array of possible target fea-
tures. The importance of multi-label classification
(MLC) can be most easily exemplified by med-
ical screening examples. For classification prob-
lems such as these, it is important to identify the
various risk factors rather than identifying the most
likely. In this paper, we employ both binary and
multi-label approaches to classifying chronic dis-
ease diagnoses based on the Behavioral Risk Fac-
tor and Surveillance System (BRFSS) survey data,
provided by the Centers for Disease and Control
and Prevention (CDC). Specifically, we apply Lo-
gistic Regression, Gaussian Naive Bayes, Decision
Trees, Random Forest and Artificial Neural Net-
works to the task of classifying healthy vs. chroni-
cally ill individuals, with a focus on diabetes, heart
disease/heart attack, and hypertension. We com-
pare and contrast the performance of these Ma-
chine Learning (ML) models, with and without ap-
plying Principle Component Analysis (PCA) for
dimensionality reduction prior to modeling. Find-
ings suggest that Logistic Regression is superior
in regards to precision, accuracy, and F1 scores
for classifying diabetes, heart disease/attack, and
hypertension. However, where recall is concerned,
Random Forest emerged as the superior model for
heat disease/attack, while Naive Bayes had the
highest recall for diabetes, and Random Forest and
Naive Bayes were virtually equivalent in best re-
call for hypertension.

Background
Chronic illness is persistent (1 year or more symp-
tom duration), functionally impairing, largely incur-
able, requires ongoing time and cost-consuming man-
agement and is alarmingly prevalent across the United
States. The Centers for Disease Control and Prevention
(CDC)’s National Center for Chronic Disease Preven-
tion and Health Promotion (NCCDPHP) estimates “6
in 10” (133 million) Americans live with at least one
chronic illness, while “4 in 10” (100 million) live with
two or more comorbid chronic diagnoses (4) (5). De-
spite the fact that over half of the adult U.S. population
is considered chronically ill (60% as of 2014), preva-
lence continues to increase with conservative projec-
tions for the year 2025 predicting 164 million afflicted
nationally (6).

Among the most common and costly chronic ill-
nesses are hypertension, lipid disorders including high
cholesterol, diabetes mellitus (type II), and heart dis-
ease. According to analysis of the 2014 Medical Ex-
penditure Panel Survey (MEPS) conducted by Buttorff,
Ruder and Bauman (2017), 27.0% of U.S. adults are
diagnosed with hypertension, 21.6% have a lipid dis-
order/high cholesterol, 10.4% are living with diabetes

(5% of which have type 1 diabetes), and 4.8% are diag-
nosed with some form of heart disease (including coro-
nary atherosclerosis) (7). Heart disease, the most com-
mon being coronary heart disease (CHD), and by asso-
ciation heart attack are the primary cause of death in
the U.S. across genders and most ethnicities, amount-
ing to 610,000 heart disease deaths/year (1 in 4 deaths)
and 790,000 heart attacks/year (8). Together, the cost
of heart disease and heart attack total $200 billion in
direct (treatment, medication) and indirect (loss of pro-
ductivity, disability) costs per year (9). Hypertension is
deemed the primary contributing cause of death among
Americans, given high blood pressure is a major risk
factor for the development of heart disease and stroke,
causing or contributing to 410,000 deaths/year (9). An-
nual combined direct and indirect costs for hypertension
in the U.S. are $48.6 billion (9). Diabetes is the seventh
leading cause of death in America and was responsible
for 252,806 deaths in 2015; in 2017, the total cost of
diabetes amounted to $327 billion (10).

Given the complex, interconnected nature of these
chronic health conditions, the present study will con-
sider many of these diagnoses simultaneously, with a
focus on hypertension, diabetes, and heart disease/heart
attack given their relatively high prevalence, mortal-
ity rates and associated healthcare expenditures. Across
age groups, 42% of U.S. adults were living with chronic
illness multimorbidity in 2014; however, middle-aged
(45 – 64 years) and older adults (65+ years) demon-
strate increased prevalence of multimorbidity when
compared to their younger adult peers, such that 50%
of middle-aged Americans and 81% of older Amer-
icans reported multiple chronic illness diagnoses (7).
Despite the growing epidemic of chronic disease in the
U.S., it is crucial to recognize that the majority of those
chronic health conditions which prohibit healthy living
and well-being and shorten the average American lifes-
pan are largely preventable. The necessary ingredients
for prevention include education, screening, healthcare
access and public empowerment. Accurately predicting
chronic illness development requires the integration of
multiple individual and environmental domains, includ-
ing demographics, current objective/subjective physi-
cal and psychological health status, health-related be-
haviors, healthcare access and social determinants of
health.

Related Work
In recent years, there has been a growing, multidis-
ciplinary movement to leverage the powerful analytic
tools of ML in order to build complex, multivariate
models of chronic illness risk and resiliency. A vari-
ety of classification-based ML models and techniques,
including but not limited to Logistic Regression, K-
Nearest Neighbors, Support Vector Machines, Decision
Trees/Random Forrest, Naı̈ve Bayes, Gradient Boost-
ing, and Neural Networks, have been applied to predict
chronic illness diagnoses based on both self-report and
electronic health record (EHR) data sources. Patil and
Tamane (2018) conducted a comparative analysis of 8
ML methods to predict Diabetes diagnoses using fea-
tures available in the Pima Indians Diabetes Database,
including Logistic Regression, K-Nearest Neighbors,



Naı̈ve Bayes, and Multilayer Perceptron (MLP). The re-
ported accuracy of all models evaluated by Patil and
Tamane ranged from 0.641 (MLP) to 0.79 (Logistic
Regression, Gradient Boosting) (11). Gradient Boost-
ing and Logistic Regression models emerged as supe-
rior in their performance as diabetes classifiers, given
that these models were consistently associated with the
highest precision (0.774; 0.762), recall (0.747; 0.716),
F1 scores (0.754; 0.730), and Area Under the Receiver
Operating Curve (ROC AUC) (0.75) (11). Conversely,
the Linear SVM and MLP neural network consistently
demonstrated the poorest performance, as indicated by
relatively low accuracy (0.689; 0.640), precision (0.340;
0.612), recall (0.50; 0.635), F1 scores (0.405; 0.613)
and ROC AUC (0.50; 0.62) (11).

Lopez-Martinez et al. (2018), Ye et al. (2018), and
LaFreniere et al. (2016) each applied ML models to
the classification of hypertension diagnoses. Lopez-
Martinez and colleagues applied a binary Logistic Re-
gression to the National Health and Nutrition Examina-
tion Survey (NHANES) 2007-2016 datasets, based on
seven pre-selected features – gender, age, race, BMI,
kidney disease status, tobacco use, and hypertension
status. Lopez-Martinez et al. (2018) reported that their
final Logistic Regression model performed with 84%
precision, 70% recall, and F1 score of 0.74, and a
ROC AUC of 73% (12). Ye and colleagues (2018) ap-
plied XGBoost, a gradient boosting ML algorithm, to
EHRs from the Maine Health Exchange Network in or-
der to predict 1-year risk for incident essential hyper-
tension. Ye and collages reported superior model per-
formance when compared to the existing literature re-
viewed here, boasting ROC AUCs of 0.917 and 0.870
across cohorts (13). LaFreniere et al. (2016) applied a
3-layer 11-7-2 Artificial Neural Network (ANN) to the
Canadian Primary Care Sentinel Surveillance Network
(CPCSSN) dataset with the aim of predicting hyperten-
sion diagnosis, based on eleven features – birth year,
gender, BMI, systolic BP, diastolic BP, HDL, LDL,
Triglycerides, Cholesterol, Micro-Albumin, and Urine
Albumin-Creatine Ratio. LaFreniere et al. (2016) re-
ported that their ANN achieves an overall accuracy of
82.3% (14). Taken together, the existing literature sup-
ports the application of ML algorithms to public health
concerns of detection and prevention of chronic illness.

Existing research utilizing the CDC’s Behavioral
Risk Factor Surveillance System datasets overwhelm-
ingly focuses on a specialized subset of the total sample
to answer a narrowly defined research question, many
with limited implications and/or no direct functional ap-
plications. As such, the proposed project leverages the
powerful analytic tools of ML to build comprehensive,
multivariate models of chronic illness risk, with results
that many one day be immediately accessible and ap-
plicable to the average American in the form of a web-
based application.

Methodology
Data Source
Since 1984, the CDC has successfully conducted the
largest cross-sectional survey of demographics, chronic
illness diagnoses, health-related behaviors and per-
ceived psychophysical wellbeing worldwide – the Be-
havioral Risk Factor Surveillance System (BRFSS).
This standardized survey is administered annually via
telephone by interviewers in demography research cen-
ters across each of the 50 United States and the U.S.
territories of Guam, Puerto Rico and the District of
Columbia. The BRFSS datasets and associated docu-
mentation are publicly available and published annually
on the CDC’s website at https://www.cdc.gov/
brfss/annual_data/annual_data.htm. The
present study utilizes the 2017 BRFSS dataset. The
complete responses of 377, 658 and partial responses
of 72,358 “noninstitutionalized” adults 18 years of age
or older and residing in the U.S. at the time of data col-
lection are included in the 2017 BRFSS database (N =
450,016). Participants were randomly selected for par-

ticipation by their telephone numbers, yielding a nation-
ally representative sample of adults by design.

Pre-processing Pipeline
A comprehensive pipeline was developed for the pur-
poses of properly pre-processing the 2017 BRFSS
dataset for subsequent modeling. The following steps
were implemented as part of the pre-processing phase:

1. Remove features deemed irrelevant to the project
aims, including a) survey metadata, b) open-ended re-
sponse data, c) inconsistently scaled continuous fea-
tures (e.g., response in months, days, and/or years),
d) redundant features (e.g., height in meters vs. height
in inches), and e) redundant outcomes (e.g., multiple
versions of the question ’Have you ever been diag-
nosed with X disease?’).

2. Rescale variables for consistency (e.g., 0 = no diag-
nosis, 1 = has diagnosis, for outcomes variables).

3. Address missingness by a) collapsing multiple miss-
ing data categories into one (e.g., ’Don’t Know’ =
’Refused’ = ’Missing’), b) dropping features missing
> 60% of the total sample, and c) applying sklearn
SimpleImputer for mode imputation of features miss-
ing < 60%.

4. Dummy coding categorical features and standardiz-
ing continuous features.

5. Applying Synthetic Minority Over-sampling Tech-
nique (SMOTe) to address imbalanced representation
of the minority class (cases with the diagnosis) in the
data. This allows us to generate synthetic data for the
minority class (3).

Figure 1: Group Frequencies before and after SMOTe
for Diabetes Outcome

For binary classification, the final, pre-processed
datasets consisted of 522 features for diabetes and heart
disease/attack, and 521 features for hypertension. After
pre-processing the data as demonstrated in our source
code, we approach the classification of disease likeli-
hood outcome(s) by implementing various models and
examining the performance of each to determine our
ideal model type that most accurately classifies the
an individuals likelihood/risk of contracting the illness
of interest. The ML models evaluated include Logis-
tic Regression, Gaussian Naive Bayes, Decision Trees,
and Neural Networks. A 70/30 train-test split was em-
ployed. We also explored the approach of applying PCA
to reduce the dimensionality of the data and feed the
models accordingly to compare performance results.
The following subsections outline the modeling ap-
proaches taken and provide a high level overview of the
underlying mathematics performed by Python’s sklearn
machine learning algorithms.
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Logistic Regression
With logistic regression, we assume a binary classifica-
tion with the goal of providing a probability of the pos-
itive class such that 0 ≤ P (y = 1) ≤ 1. Unlike linear
regression where we computed g(x, θ) = xθ, we fo-
cus our attention on classifying the outcome value with
respect to where it falls on the sigmoid. We do so by
computing the following probability:

P (y = 1 | x, θ) = g(x, θ) =
1

1 + e−xθ

Similarly, we can compute the probability of the an ob-
servation belonging to the negative class by computing
1−g(x, θ). It is important to observe that the probability
function defined above is differentiable at every point.
This is useful because with logistic regression, we seek
to find the parameters θ that minimize the classification
error or maximize the correct class likelihood. To do so,
we need to take a derivative. To explain further, given a
supervised observation (x, y), we wish to compute the
likelihood of a correct classification using the following
equation:

l(y | x, θ) = (g(x, θ))y(1− g(x, θ))(1−y)

Applying this approach to the entire data set and assum-
ing conditional independence across the observations,
we can write the above equation in the following form:

l(Y |X, θ) =
N∏
t=1

(g(Xt, θ))
Yt(1− g(Xt, θ))

(1−Yt)

From here, we desire to take the derivative. However,
we will first take the log of the above formulation. Once
we do this, we will maximize the log-likelihood by tak-
ing the derivative as alluded to above. The following
derivation shows how we arrive to the formulation of
computing the parameters θ:

l(Y |X, θ) =
N∑
t=1

Ytln(g(Xt, θ))+(1−Yt)ln(1−g(Xt, θ))

Proceeding with maximizing the log-likelihood we
have:
∂

∂θj
l(y|x, θ) = ∂

∂θj
(yln(g(x, θ))+(1−y)ln(1−g(x, θ)))

=
y

g(x, θ)

∂

∂θj
(g(x, θ))+

(1− y)
1− g(x, θ)

∂

∂θj
(1− g(x, θ))

=
y

g(x, θ)

∂

∂θj
(

1

1 + e−xθ
)+

(1− y)
1− g(x, θ)

∂

∂θj
(1− 1

1 + e−xθ
)

From here, let us simplify our computation by comput-
ing ∂

∂θj
( 1
1+e−xθ

)

∂

∂θj
(

1

1 + e−xθ
) = xjg(x, θ)(1− g(x, θ))

Substituting this result into our flow above and simpli-
fying we yield the following:

∂

∂θj
l(y | x, θ) = xj(y − g(x, θ))

Vectorizing this result for all the parameters we have the
following form:

∂l

∂θ
= xT (y − g(x, θ))

Next, we wish to vectorize this result to be the mean
gradient across all observations which gives us:

∂l

∂θ
=

1

N
xT (y − g(x, θ))

From here, we apply gradient decent such that our pa-
rameters θ converge to their true values. We do this by
updating θ as follows:

θ = θ − η

N
XT (g(x, θ)− Y )

Where η is the learning rate. After convergence is
reached, we will have obtained our final model utiliz-
ing logistic regression.

Gaussian Naı̈ve Bayes
A Naı̈ve Bayes Classifier is a machine learning algo-
rithm based on Bayes theorem. The Bayes theorem can
be represented as following:

P (A | B) =
P (B | A)P (A)

P (A)

A and B are events. P (A) and P (B) are the proba-
bilities of events and are independent from each other.
P (A | B) is the probability of A occurring given the
condition B. And P (B | A) is the probability of B
happening given the condition A. As touched on above,
in Naı̈ve Bayes, the features are assumed to be indepen-
dent of each other. By using the basis of Bayes theo-
rem, the Naı̈ve Bayes Classifier formula can be written
as follows:

P (y = i | f = x) =

D∏
k=1

P (fk = xk | y = i)

where x is a set of D features and y is the class. Since
a large amount of our data is represented as contin-
uous values and we can’t calculate the probability of
the value, we applied Gaussian Naı̈ve Bayes algorithm
that uses the Gaussian Distribution Function to calcu-
late the probabilities. The Gaussian Distribution Func-
tion is shown below.

f(x | µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2

where µ is the mean and σ is the standard deviation. We
applied a binary classification. We calculated the proba-
bilities for both classes, and the class that had the high-
est probability was declared the predicted result.

Decision Trees
The underlying idea behind decision tree classification
is that of measuring the impurity of a node. “A node
having multiple classes is impure whereas a node hav-
ing only one class is pure” (2). Given data with a set
of features, we desire to identify the feature(s) that can
split the data into subsets that ideally contain obser-
vations from a single class. To achieve this, we lever-
age an approach of feature selection, namely informa-
tion gain. We should note here that there are two ap-
proaches for computing the information gain. A com-
monly used approach is to compute the entropy of the
system which measures the randomness of the data. An-
other approach (Python’s sklearn default) is to compute
the Gini Score/Index. The following equations illustrate
the difference of entropy versus the Gini Score:

Entropy

H(P (v1), . . . , P (vn)) =

n∑
i=1

(−P (vi)lognP (vi))

Gini Score/Index

H(P 2(v1), . . . , P
2(vn)) = 1−

n∑
i=1

P 2(vi)

where P (vi) is the probability of event v occurring in a
given node corresponding to feature i.

We choose to leverage the entropy approach for
the purposes of providing the reader with a high-level
overview of the underlying math associated to decision
tree modeling. In reference to the entropy equation
outlined above, we determine the attribute to split on by
computing the information gain associated to a given
feature. Let us assume a discrete binary classification.
We identify the feature(s) of interest by computing the
information gain. As mentioned above, we assume a
binary classification where we notate p as the number
of samples with a classification label one and n as
the number of samples with classifications labeled
zero. We utilize these figures to compute the prior
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probability. Lastly, we will let pi and ni represent the
number of samples associated to each subset Ei with
labels one and zero respectively. Note that Ei is the
subset associated to each observations value Xi,j . The
idea here is to minimize the entropy after the split
on the feature(s). Under these assumptions, we can
compute the average entropy as follows:

E(H(A)) =

k∑
i=1

pi + ni
p+ n

H(
pi

pi + ni
,

ni
pi + ni

)

We now have everything we need to compute the infor-
mation gain associated to a given feature. The following
equation illustrates how we achieve our conclusions of
which feature/attribute to split on:

IG(A) = H(
p

p+ n
,

n

p+ n
)− E(H(A))

Based on the resulting outputs from the equation above,
we will select the feature with the largest information
gain. One thing to keep in mind when implementing a
decision tree model is the concept of over-fitting. Since
decision tree algorithms are an iterative process, it is
common to use a validation set and report the accuracy
score associated to a given tree. Given this aspect of the
algorithm, we chose to explore the implementation of a
random forest approach to our data for comparison (see
results section for comparisons).

Neural Network Architecture
The intricacies of MLC problems may be better cap-
tured by models with higher orders of complexity, thus
we have constructed feed-forward artificial neural net-
works (NN) for simultaneous classification of various
types of chronic diseases. The width and density of this
network was kept to a minimum (relative to many other
neural network architectures) to easily investigate the
training methods of multi-label classification — a 183-
100-10 neural network was constructed.
When considering the activation of our NN, we cannot
represent our class label outputs as a probability distri-
bution amongst all labels as in a typical logistic regres-
sion model (assigning the label with the highest proba-
bility). Rather, the output nodes of possible class labels
must be represented by a sigmoid activation function.
Additional attention was also given to the method of
learning for our NN. The multi-label nature of our
model requires that the model learn and propagate er-
ror for each label output independently; therefore, our
loss function is simply binary cross entropy (or binary
log loss). The use of this loss function will ensure that
each label output is modeled as independent Bernoulli
Distributions.

Experiments and Results
Binary Classification Results
The tables below display results associated with the
various models implemented, namely Logistic Regres-
sion (LR), Gaussian Naı̈ve Bayes (GNB), Decision
Tree (DT), and Random Forest (RF). Each model was
run with and without applying PCA prior to modeling.
PCA selected a total of 95 features for diabetes and
heart disease/attack, and 99 features for hypertension.
For every outcome/model combination examined,
results with all features retained were superior to the
results obtained with dimensionality reduction applied.
Performance metrics highlighted in bold are associated
with the highest achieved performance across models
for each outcome - diabetes, heart disease/attack, and
hypertension. Overall, Logistic Regression emerged
as the model with superior performance for binary
classification of diabetes, heart disease/attack, and
hypertension, as measured by accuracy, precision, and
F1 scores. Given that high recall (minimizing risk
of false negatives) is prioritized in medical diagnosis
classification, we note that Naive Bayes was associated

with the highest recall for diabetes, while Random
Forest was associated with the highest recall for heart
disease/attack. Both Naive Bayes and Random Forest
provided comparable, highest recall rates for hyperten-
sion.

Diabetes Model Results
Metrics LR GNB DT RF
Accuracy 0.8701 0.6776 0.7984 0.7025
Precision 0.5476 0.2375 0.3511 0.2498
Recall 0.4628 0.5802 0.5038 0.5524
F1-Score 0.5016 0.3370 0.4138 0.3441
True Pos 8824 11063 9606 10533
False Pos 7290 35523 17750 31627
True Neg 108647 80414 98187 84310
False Neg 10244 8005 9462 8535

Diabetes PCA Model Results
Metrics LR GNB DT RF
Accuracy 0.8465 0.6451 0.7936 0.7110
Precision 0.4440 0.1734 0.2092 0.2230
Recall 0.3438 0.4017 0.1660 0.4212
F1-Score 0.3875 0.2423 0.1851 0.2916
True Pos 6555 7659 3165 8032
False Pos 8208 36500 11966 27987
True Neg 107729 79437 103971 87950
False Neg 12513 11409 15903 11036

Heart Disease/Attack Model Results
Metrics LR GNB DT RF
Accuracy 0.9046 0.7150 0.8738 0.7441
Precision 0.4314 0.1469 0.3018 0.1702
Recall 0.2883 0.4704 0.3381 0.4876
F1-Score 0.3456 0.2239 0.3189 0.2536
True Pos 3401 5549 3988 5870
False Pos 4482 32223 9227 28625
True Neg 118727 90986 113982 94584
False Neg 8395 6247 7808 5926

Heart Disease/Attack PCA Model Results
Metrics LR GNB DT RF
Accuracy 0.8907 0.7595 0.8211 0.7284
Precision 0.3391 0.1293 0.1756 0.0962
Recall 0.2648 0.3056 0.2835 0.2512
F1-Score 0.2974 0.1817 0.2168 0.1392
True Pos 3123 3605 3344 2963
False Pos 6086 24284 15704 27828
True Neg 117123 98925 107505 95381
False Neg 8673 8191 8452 8833

Hypertension Model Results
Metrics LR GNB DT RF
Accuracy 0.7491 0.6119 0.7062 0.5522
Precision 0.6883 0.5108 0.6201 0.4678
Recall 0.6872 0.8268 0.6949 0.8269
F1-Score 0.6878 0.6314 0.6554 0.5976
True Pos 37302 44882 37720 44886
False Pos 16889 42991 23105 51059
True Neg 63833 37731 57617 29663
False Neg 16981 9401 16563 9397

Hypertension PCA Model Results
Metrics LR GNB DT RF
Accuracy 0.7329 0.6701 0.6876 0.6253
Precision 0.6668 0.5737 0.6029 0.5310
Recall 0.6713 0.6987 0.6532 0.5821
F1-Score 0.6690 0.6301 0.6271 0.5554
True Pos 36438 37928 35458 31599
False Pos 18212 28180 23351 27907
True Neg 62510 52542 57371 52815
False Neg 17845 16355 18825 22684

Multi-Label Neural Network Results

For MLC problems, it becomes difficult to evaluate a
model using traditional binary or multi-class metrics
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Figure 2: Logistic Regression

Figure 3: Random Forest

Figure 4: Naive Bayes

Figure 5: Decision Tree

Figure 6: ROCs for Diabetes Classification Models

such as a contingency table or a confusion matrix. The
context of the modeling goal becomes important as we
may want to understand the labels’ dependencies to one
another — conditional and marginal (unconditional)
dependency (1). The focus of this study will be on the
marginal dependencies of the labels.
To measure the performance of our MLC model we
have considered the error cost of a false negative
(missing a diagnosis) and false positive (assigning
an incorrect diagnosis) to be high. Thus, our MLC
model metrics have focused on the model’s sensitivity
(“recall” or “true positive rate”) and specificity (“se-
lectivity” or “true negative rate”). Additionally, the
hamming-loss of the model is provided to understand
the overall fraction of incorrect labels amongst all
labels. Thus, we would seek a model with high recall.
The issue with solving by decomposition into several
binary classifiers (binary relevance training) is that
this approach may ignore important interdependencies
of the labels. In the table below, the sensitivity and
specificity metrics of the model for each class label are
given — with the average across all labels being 0.5036

Figure 7: Logistic Regression

Figure 8: Random Forest

Figure 9: Naive Bayes

Figure 10: Decision Tree

Figure 11: ROCs for Heart Disease/Attack Classifica-
tion Models

and 0.7511 for sensitivity and specificity, respectively.
Furthermore, the overall hamming loss was calculated
to be 0.2817.

Neural Network MLC Model Results
Class Label Sensitivity Specificity
Heart Attack 0.4352 0.8894
Angina 0.5110 0.8926
Stroke 0.5287 0.7342
Asthma 0.1793 0.8039
Skin Cancer 0.5967 0.7038
General Cancer 0.6002 0.6513
COPD 0.5387 0.7450
Arthritis 0.6017 0.7587
Depression 0.4522 0.6335
Kidney Disease 0.5920 0.6986

Note: Threshold for each label was set as the mean of
probability rather than default 0.5

The exception of low sensitivity for the Asthma
label suggests that critical attributes for identifying the
positive instances are missing from our dataset. Further
analysis of the original dataset (prior to PCA) may help
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Figure 12: Logistic Regression

Figure 13: Random Forest

Figure 14: Naive Bayes

Figure 15: Decision Tree

Figure 16: ROCs for Hypertension Classification Mod-
els

to identify the critical information for this particular
label.

Conclusions
Analyzing the results above, we observe that the per-
formance of our disease classifier is heavily depen-
dent on the the algorithmic model we choose. Based
on accuracy, precision, and F1 scores, the model with
the highest performance across disease outcomes was
the Logistic Regression binary classifier. Based on the
same performance metrics, the Decision Tree classi-
fier emerged as the second best binary classifier across
all diseases outcomes. We observed that performance
based on recall alone varied across outcomes, such that
Naive Bayes was associated with the highest recall for
diabetes, Random Forest provided the highest recall
for heart disease/attack, and Naive Bayes and Random
Forest were comparable in their performance on recall
for Hypertension. Models that incorporated PCA per-
formed poorly compared to models utilizing the full set

of available features. We posit that the extensive pre-
processing which occurred prior to applying PCA in
order to rid that dataset of redundant features in com-
bination with the loss of information that occurs as a
function of PCA is responsible for these results. Addi-
tionally, PCA is best suited for continuous as compared
to categorical data. Though dummy coding of categori-
cal features was performed as part of pre-processing, it
should be noted that the majority of the features in this
dataset were categorical in nature.
Transitioning our attention to the Receiving Operat-
ing Characteristics (ROC) and Area Under the Curve
(AUC) diagrams, we assumed a threshold of 50%. Un-
der this assumption we glean important information
about the performance of our models in addition to the
generic performance metrics such as precision and re-
call. To explain further, let us examine the results of our
Diabetes classifiers. We see that although the decision
tree classifier has an AUC of one, the ROC curve il-
lustrates a fairly poor performance in regard to separat-
ing the classes as it hugs the “red” reference line. Fur-
thermore, even though the accuracy of the decision tree
model reports to be higher than that of the random for-
est model as outlined in the tables above, we see from
the ROC/AUC curves that the random forest model is
superior when it comes to separating the classes with
a true positive rate of approximately 80% and a false
positive rate of around 20% as opposed to that of the
decision tree model with true positive and false positive
rates indicating 40% and 10% respectively. This further
alludes to the fact that although the performance metrics
portray good performance with respect to the decision
tree model, we see that it does a poor job of separat-
ing the classes as mentioned above. Using the classifi-
cation models we implemented to identify chronic dis-
ease based on our extensive amount of features within
our data, we see that the logistic regression model and
random forest model show promising results while min-
imizing classification error rates. Overall, we were able
to improve upon our proposed baseline evaluation re-
sults and provide a novel analysis of chronic disease
classification. For additional model evaluation results
such as confusion matrices and PR curves, please refer
to our source code.

Future Work/Extensions
We encourage future researchers to expand on our
results by refining our implementation of multi-
classification. Furthermore, we recognize that there
could exist some biases embedded in our results due
to imbalanced data. As mentioned in the sections
above, we did apply SMOTe to the data to generate
synthetic data to control for this, however, we urge
future expansion of this to optimize the normality of
the data prior to running the machine learning models
we implemented above. Relevant, health-related data-
sources other than BRFSS could also be aggregated to
increase the breadth of relevant features and improve
performance. Other areas of interest include optimizing
the neural network and exploring the application of
penalty terms to the models in an attempt to better
classify the data. Additionally, feature importance
analysis could be applied to the modeling results to
determine which features are most influential, signaling
the most impactful targets of intervention to improve
health. Future directions of this line of research may
also include development of a web-based application
for disseminating information to the general public
about predicted risk for chronic illness to motivate
positive, actionable health behavior change.
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